Space-Efficient Data Structure for $(k \dots 21)$ -avoiding Involutions

Daigo Oitaira

Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo

A permutation $\pi: [n] \to [n]$ is said to be $(k \dots 21)$ -avoiding if π does not contain a decreasing subsequence of length k. Moreover, π is called an involution if $\pi = \pi^{-1}$. In this paper, we consider the design of a space-efficient data structure for a $(k \dots 21)$ -avoiding involution π that supports $\pi(i)$ queries in sub-linear time.

For general permutations, the information-theoretical lower bound is $n \log n - O(n)$ bits¹. (k...21)-avoiding permutations and (k...21)-avoiding involutions are among subclasses of general permutation whose information-theoretical lower bound is O(n) bits. It follows from Regev's result [3] that when k = O(1), the information-theoretical lower bound for these classes are $2n \log(k-1) - o(n)$ bits and $n \log(k-1) - o(n)$ bits, respectively.

Barbay et al. [1,2] showed that there exists a data structure for a $(k \dots 21)$ -avoiding permutation π of length n that uses $2n \log(k-1) + o(n)$ bits and supports $\pi(i)$ and $\pi^{-1}(j)$ queries, which is succinct when k = O(1). The key idea of their structure is that any $(k \dots 21)$ -avoiding permutation can be decomposed into at most k - 1 increasing subsequences. Building on this idea, we propose a data structure for a $(k \dots 21)$ -avoiding permutation π of length n that uses $n \log(k-1) + o(n)$ bits if k is even and $n \log k + o(n)$ bits if k is odd. This data structure is succinct when k is an even constant. Table 1 summarizes space and time complexity of data structures for some subclasses of permutations.

Reference	Class	Information -theoretical lower bound 2	Space 2	Query time of $\pi(i)$ and $\pi^{-1}(j)$
[1,2]	$(k \dots 21)$ -avoiding permutation	$2n\log(k-1) - o(n) \text{ bits}$	succinct	$O\left(1 + \frac{\log k}{\log \log n}\right)$
New	$(k \dots 21)$ -avoiding involution (k is even)	$ \begin{array}{c} n\log(k-1) \\ -o(n) \text{ bits} \end{array} $	succinct	$O\left(1 + \frac{\log k}{\log \log n}\right)$
New	$(k \dots 21)$ -avoiding involution (k is odd)	$ \begin{array}{c} n\log(k-1) \\ -o(n) \text{ bits} \end{array} $	$ \begin{array}{c} n \log k \\ + o(n) \text{ bits} \end{array} $	$O\left(1 + \frac{\log k}{\log \log n}\right)$

Table 1: Data structures for some subclasses of permutations

References

- Jérémy Barbay and Gonzalo Navarro. On compressing permutations and adaptive sorting. Theoretical Computer Science, 513:109–123, 2013.
- [2] Jérémy Barbay, Francisco Claude Faust, Travis Gagie, Gonzalo Navarro, and Yakov Nekrich. Efficient fully-compressed sequence representations. *Algorithmica*, 69, 11 2009.
- [3] Amitai Regev. Asymptotic values for degrees associated with strips of Young diagrams. Advances in Mathematics, 41(2):115–136, 1981.

¹In this paper, log denotes the logarithm to the base 2.

²Information-theoretical lower bounds and space succinctness are considered under k = O(1).