
Improved Algorithms for Finding the Smallest Color-Spanning Two Squares

Chaeyoon Chung∗ Jaegun Lee∗ Hee-Kap Ahn†

1 Introduction
Given a set P of n points in the plane, each assigned one
of k colors, a color-spanning object is a set of geomet-
ric shapes whose union contains at least one point of each
color. In this paper, we investigate the problem of finding the
smallest color-spanning pair of axis-parallel squares—that is,
two axis-parallel squares whose union covers all colors while
minimizing the side length of the larger one (see Figure 1).
We refer to this problem as SCSS2 throughout the paper.

Figure 1: Smallest color-
spanning two squares

We present two algorithms
for SCSS2 that offer a trade-
off between time and space com-
plexity. The first algorithm runs
in O(kn2 log k log n) time using
O(kn) space, while the second
runs in O(kn2 log2 n) time usin
O(n) space. Both algorithms im-
prove upon the previously best-
known algorithm, which requires

O(kn2 log3 n) time and O(n) space, by reducing the time com-
plexity.

2 Characterization
Observation 1. There always exists an optimal pair of
squares for SCSS2 such that each square has at least one
input point on its bottom side.

Both algorithms in Section 3 solve the decision version of
the problem. Given a positive value d, the goal is to determine
whether there exist two squares of side length d that span all
colors.

To approach this, we first refine the problem’s objective.
Let p1 and p2 be two input points. We aim to find two squares,
one with p1 on its bottom side and the other with p2 on its
bottom side, that together maximize the number of covered
colors. We then check whether all colors are covered.

By Observation 1, such color-spanning squares of side
length d exist if and only if there is a pair of points that
satisfies this condition. We assume that d is given as the side
length of the squares for the decision problem.

Event pair Let p be an arbitrary point in the plane. Among
the squares of side length d with p on its bottom side, consider
the leftmost one. Now, imagine sliding this square to the right
while tracking the set of colors it covers. The set of covered
colors changes at specific moments, which we call events. For
each color, there can be at most two such events.

In this paper, we focus on the case where exactly two
events occur for each color, as other cases can be handled

in a similar manner. We refer to the two points where the
events for color α occur as the event pair of p for color α
(See Figure 2).

q

q′

p

d

Figure 2: The event pair of
p for orange color is (q, q′).

We parameterize the sliding
range of the square as an inter-
val within [0, d]. Let p1 and p2 be
the event pair of an arbitrary point
p for color α, with x-coordinates
x1 and x2, respectively. Then, the
range in which the square con-
tains a point of color α is given
by [0, x1] ∪ [x2, d].

3 Algorithms
We present two algorithms that solve the decision version of
SCSS2 for a given value d > 0. In both algorithms, we first
fix two points p1, p2 ∈ P and determine whether two squares
of side length d, one with p1 on its bottom side and the other
with p2 on its bottom side, can span all colors. We then repeat
this process for every pair of points in P .

The first algorithm For each point in P , we precompute
all event pairs of p for all k colors. Consider the leftmost square
of side length d with p on its bottom side, and let C be the set
of colors not covered by this square. The second square must
cover C while having point p2 on its bottom side.

To efficiently track coverage, we maintain a segment tree T
storing the intervals induced by C and p2. As the first square
slides to the right, colors enter or leave C at event points,
prompting insertions or deletions of corresponding intervals in
T . By checking whether the maximum depth of intervals in T
is |C|, we can determine whether a valid pair of squares exists.

Before introducing our second algorithm, we first present
the following key observation. Let Pα denote the set of points
in P of color α.

Lemma 2. For a color α, the number of distinct event pairs
in P of color α generated by points in the plane is O(|Pα|).

The second algorithm To reduce the time complexity,
we avoid precomputing all event pairs for each point. Using
Lemma 2, we compute the subdivision of the plane for each
color, where points within the same cell share the same event
pair. Then, for each pair p1 and p2, we find the events for ev-
ery color from these subdivisions using point-location queries.
This approach incurs an additional O(log n) time per pair.

Theorem 3. We can find the smallest color-spanning two
squares in O(kn2 log k log n) time and O(kn) space, or in
O(kn2 log2 n) time and O(n) space.

∗Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, Korea. {chaeyoon17,
jagunlee}@postech.ac.kr

†Department of Computer Science and Engineering, Graduate School of Artificial Intelligence, Pohang University of Science and Technology,
Pohang, Korea. heekap@postech.ac.kr

1

	Introduction
	Characterization
	Algorithms

